

Chapter 6 Population and Community Ecology

Nature exists at several levels of complexity

Individual Survival and reproduction the unit of natural selection

Figure 6.1 *Environmental Science* © 2012 W. H. Freeman and Company Population ecology: Population ecologists study the factors that regulate population abundance and distribution.

Factors that Regulate Population Abundance and Distribution

- Population size: the total number of individuals within a defined area at a given time.
- Population density: the number of individuals per unit area at a given time.

Factors that Regulate Population Abundance and Distribution

- Population distribution: how individuals are distributed with respect to one another.
- **Population sex ratio:** the ratio of males to females.
- Population age structure: how many individuals fit into particular age categories.

Population Distribution

- Population distribution: how individuals are distributed with respect to one another. There are three types:
 - 1.Random
 - 2.Uniform
 - 3.Clumped

.

.....

**

(a) Random distribution

(c) Clumped distribution

Figure 6.3 Environmental Science © 2012 W. H. Freeman and Company

- Density-dependent factors: the size of the population will influence an individual's probability of survival.
- Density-independent factors: the size of the population has no effect on the individual's probability of survival.

 Density-dependent factors: these are limiting resources and influence an individual's probability of survival and reproduction in a way that depends on the size of the population.

- Density-dependent factors include:
 - For terrestrial plants: water and soil nutrients.
 - For animals: food, water, and nesting sites.

 Density-independent factors have the same effect on an individual's likelihood of survival and amount of reproduction, at any population size.

 Density-independent factors include: Hurricanes, tornados, floods, fires, volcanic eruptions, environmental temperatures, etc.

Growth models help ecologists understand population changes.

Growth Models

Population growth models are mathematical equations used to predict population size at any moment in time.

Growth Models

Growth rate: the number of offspring an individual can produce in a given time period, minus the deaths of the individual or offspring during the same period.

Growth Models

Intrinsic growth rate: under ideal conditions, with unlimited resources, the maximum potential for growth (denoted as *r*) for a population.

If we know:

- the intrinsic growth rate for a population (r), and
- *current number* of reproducing individuals (N_0) ,

we can estimate the population's *future size* (N_t) after a period of *time* (t) has passed.

 That is, we can use the exponential growth model to estimate future population size:

$$N_t = N_0 e^{rt}$$

where e is the base (2.72) of the natural logarithms.

If a population *is not limited by resources*, growth can be very rapid due to many births, forming a *J*-*shaped curve* when population size is graphed against time.

J-shaped curve: when graphed, the *exponential* growth model looks like this:

 $N_t = N_0 e^{rt}$ Population size

Figure 6.5 Environmental Science © 2012 W. H. Freeman and Company

The *exponential growth model* describes a population that grows continuously and at a fixed rate.

- Logistic growth: when a population whose growth is initially exponential, but slows as the population approaches the carrying capacity.
- S-shaped curve: when graphed, the logistic growth model looks like an "S".

Carrying capacity (*K*) is the limit of how large a population can be sustained by the *limiting resources*, especially food.

Time

Figure 6.7 Environmental Science © 2012 W. H. Freeman and Company

At *carrying capacity*, growth ceases as the number of births equals the number of deaths.

Variations on the Logistic Model

- If food or other limiting resources become scarce, the population will experience an *overshoot* by becoming larger than the carrying capacity.
- This will result in a *die-off*, or population crash.

Variations of the Logistic Model

Overshoot and die-off.

Time

Figure 6.9 Environmental Science © 2012 W. H. Freeman and Company

Reproductive Strategies

- *K-selected species:* the population of a species that grows slowly until it reaches the carrying capacity.
- Abundance is determined by carrying capacity, hence the use of "*K*".
- Examples include elephants, whales, and humans.

Reproductive Strategies

- *R-selected species:* the population of a species that grows quickly, and is often followed by overshoots and die-offs.
- So-called because "r" denotes the intrinsic growth rate.
- Examples include mosquitoes and dandelions.

TABLE 6.1	Traits of K-selected and r-selected species			
Trait		K-selected species	r-selected species	
Life span		Long	Short	
Time to reproductive maturity		Long	Short	
Number of reproductive events		Few	Many	
Number of offspring		Few	Many	
Size of offspring		Large	Small	
Parental care		Present	Absent	
Population growth rate		Slow	Fast	
Population regulation independent		Density dependent	Density	
Population dynamics		Stable, near carrying capacity	Highly variable	

Survivorship Curves

- Different species have distinct survivorship patterns of the life span:
 - Type I curve: excellent survivorship over life span.
 - Type II curve: relative constant decline.
 - Type III curve: low rates of early survivorship.

Survivorship Curves

Age

Metapopulations

- Metapopulations: a group of spatially distinct populations that are connected by occasional movements of individuals between them.
- This connectedness is important for each population's survival.
- Small, isolated populations are more likely to go extinct.

Metapopulations

Figure 6.13 Environmental Science © 2012 W. H. Freeman and Company

Community ecologists study species interactions.

Competition

Competition: individuals struggling to obtain a limiting resource.

Competition

Figure 6.14 Environmental Science © 2012 W. H. Freeman and Company

Competition

- Competitive exclusion principle: two species competing for the same limiting resources cannot coexist. This can lead to resource partitioning.
- Resource partitioning: two species coevolve to divide a limiting resource, through differences in species behavior or form.

© 2012 W. H. Freeman and Company

Predation

- Predation: the use of one species as a resource by another species.
- Predators are found in four forms: true predators, herbivores, parasites, and parasitoids.

Predation

- True predators: kill their prey.
- *Herbivores:* consume plants as prey.
- **Parasites:** live on or in the organism they consume. If they cause disease, they are *pathogens*.
- Parasitoids: lay eggs inside other organisms.

Mutualism

 Mutualism: A type of interspecific interaction where both species benefit.

Figure 6.18 Environmental Science © 2012 W. H. Freeman and Company

Figure 6.18 (inset) Environmental Science © 2012 W. H. Freeman and Company

Commensalism

 Commensalism: a type of relationship in which one species benefits but the other is neither harmed nor helped.

Symbiosis

- Symbiotic relationships: two species live in close association.
- Commensalism, mutualism, and parasitism are all examples of symbiotic relationships.

Summary of Species Interactions

+ is a positive effect, – negative, and 0 is neutral.

TABLE 6.2	Int and	eractions betw d their effects	veen species
Type of interaction		Species 1	Species 2
Competition		_	
Predation		+	
Mutualism		+	+
Commensalism		+	0

Keystone Species

 Keystone species: a species that plays a role in its community that is far more important than its relative abundance might suggest.

Figure 6.22 (inset) Environmental Science © 2012 W. H. Freeman and Company

Figure 6.22 Environmental Science © 2012 W. H. Freeman and Company

Keystone Species

- Keystone species typically exist in low numbers.
- They may be predators, sources of food, mutualistic species, or providers of other ecological services.
- For instance, North American beavers can act as *ecological engineers*, modifying their environment in ways that create and maintain their habitat.

The composition of a community changes over time.

Ecological Succession

- Ecological succession occurs as:
 - Primary succession
 - Secondary succession
 - Aquatic succession

Primary Succession

Primary succession: occurs on surfaces that are initially devoid of soil.

Primary Succession

Figure 6.23 Environmental Science © 2012 W. H. Freeman and Company

Secondary Succession

 Secondary succession: occurs in areas that have been disturbed but have not lost their soil.

Secondary Succession

Figure 6.24 Environmental Science © 2012 W. H. Freeman and Company

Figure 6.25 *Environmental Science* © 2012 W. H. Freeman and Company

The species richness of a community is influenced by many factors.

Factors that determine species richness

- Latitude: moving north or south away form the equator, species richness declines.
- *Time:* older habitats show more variety of species.

Factors that determine species richness

 Habitat size and distance: size of the habitat and distance from the colonizing species affects the number and types of species. This is the basis for the theory of island biogeography.

Theory of Island Biogeography

Figure 6.26 *Environmental Science* © 2012 W. H. Freeman and Company

- 1. List the levels of complexity that make up the biosphere.
- 2. Distinguish a *population* from a *community*.
- 3. What is the difference between immigration and emigration?
- 4. What are the three ways in which a population can be distributed?

- 5. What is the difference between a *density- dependent* and a *density-independent* factor?
- 6. Give an example of each type of factor.
- 7. The *J*-shaped curve is associated with what model?
- 8. The S-shaped curve is associated with what model?

- 9. How is a die-off associated with carrying capacity?
- 10. Give some characteristics of a *K*-selected species? Give an example.
- 11. What are some characteristics of an *r*-selected species? Give an example.
- 12. What are the three types of survivorship curves, and how do they differ form one another?

- 13. Name and describe the four forms of *predation*.
- 14. What is a pathogen?
- 15. Distinguish mutualism from commensalism.
- 16. What is a keystone species? Why are they important in ecosystems?

- 17. What is primary succession?
- 18. What is secondary succession?
- 19. Which type of succession would occur on an abandoned parking lot?
- 20. What are the two factors underlying the *theory of island biogeography*?