

Chapter 8 Earth Systems and Resources

Earth's resources were determined when the planet formed.

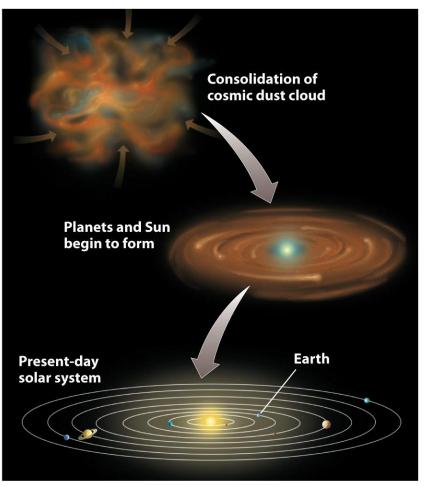
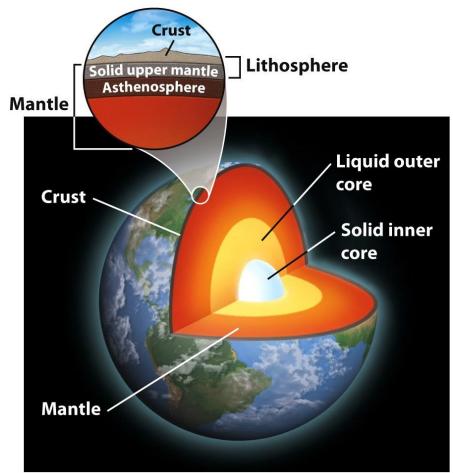
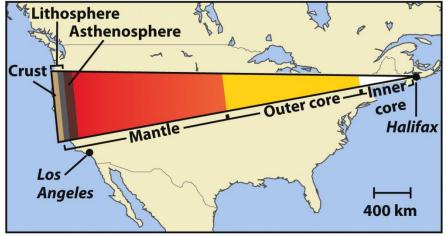



Figure 8.1 Environmental Science © 2012 W. H. Freeman and Company


The Earth's Crust Layers

- **Core:** innermost zone of the planet, largely nickel and iron.
- Mantle: above the core, contains magma (molten rock).
- **Crust:** the outermost layer of the planet.

Earth's vertical zonation

Figure 8.2a Environmental Science © 2012 W. H. Freeman and Company

Scale of Earth's layers

Figure 8.2b Environmental Science © 2012 W. H. Freeman and Company

The Earth's Layers

- Asthenosphere: the outer part of the mantle, composed of semi-molten rock.
- Lithosphere: the brittle outermost layer of the planet, approximately 100 km thick.

Earth is dynamic and constantly changing

• The Earth's geologic cycle consists of three cycles: the *tectonic cycle*, the *rock cycle*, and *soil formation*.

Convection and Hot Spots

- The Earth is very hot at the center.
- This heat causes plumes of hot magma to well rise upward from the mantle.
- Hotspots: intra-place locations where molten material from the mantle reach the *lithosphere*.

Convection and Hot Spots

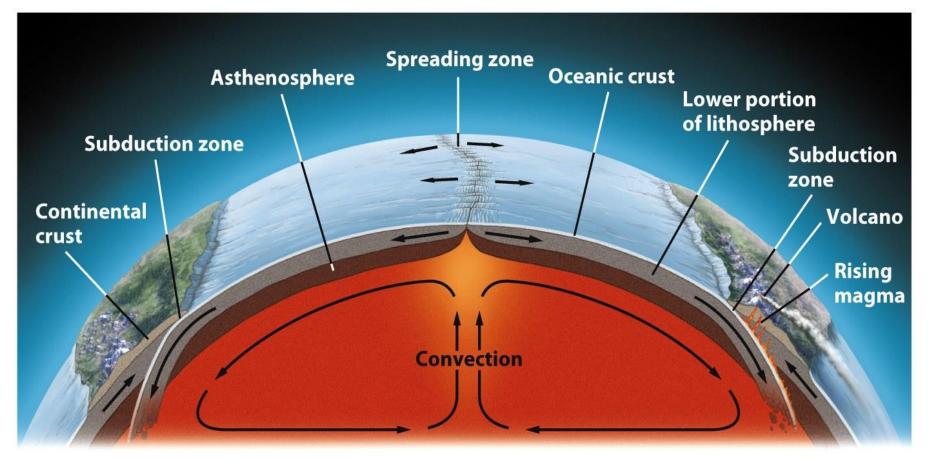
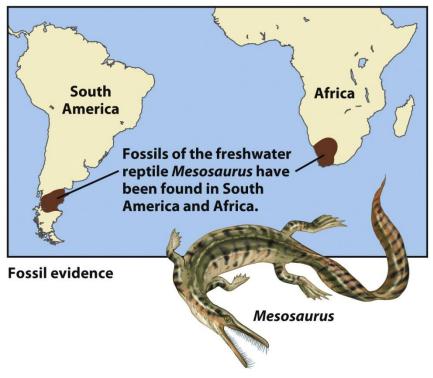



Figure 8.5 Environmental Science © 2012 W. H. Freeman and Company

Theory of Plate Tectonics

• Plate tectonics:

the theory that states that Earth's *lithosphere* is divided into plates, most of which are in constant motion.

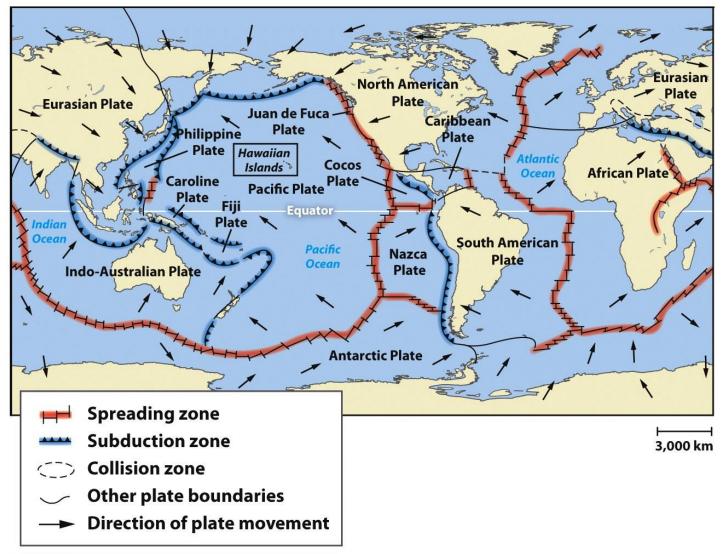
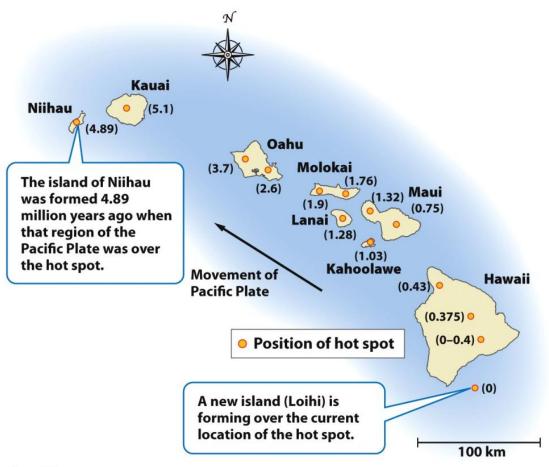
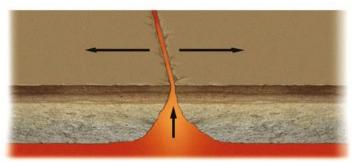


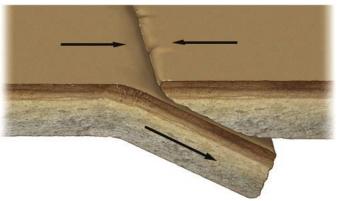
Figure 8.4 Environmental Science © 2012 W. H. Freeman and Company

Consequences of Plate Movement

- Volcanoes: as a plate moves over a hot spot, rising magma forms a volcano.
- Volcanoes vent ash, gases, and molten *lava*.

Consequences of Plate Movement


Figure 8.7 Environmental Science © 2012 W. H. Freeman and Company

Types of Plate Contact

- **Divergent plate boundaries:** plates move apart from one another.
- **Convergent plate boundaries:** plates move toward one another and collide, with great force.
- Transform fault boundaries: plates move sideways past each other.

(a) Divergent plate boundary

(b) Convergent plate boundary

(c) Transform fault boundary

Figure 8.8 Environmental Science © 2012 W. H. Freeman and Company

Tectonic Cycle

 The tectonic cycle is the sum of all processes that build up and break down the Earth's lithosphere.

- **Faults:** a fracture in rock across which there is movement.
- **Earthquakes:** occur when the rocks of the lithosphere rupture unexpectedly along a fault.

Figure 8.10 Environmental Science © 2012 W. H. Freeman and Company

- Fault zone: large expanses of rock where movement has occurred.
- **Epicenter:** the exact point on the surface of Earth directly above the location where the rock ruptures.

- **Richter scale:** a measure of the largest ground movement that occurs during an earthquake.
- The scale increases by a factor of 10, so an earthquake of 7 is 10 (10¹) times greater than an earthquake of magnitude 6.
- An earthquake of intensity 8 is 100 (10²) times greater than an earthquake of magnitude 6.

The rock cycle recycles minerals and elements.

- Rock cycle: the constant formation and destruction of rock.
- This is the slowest of all of Earth's cycles.

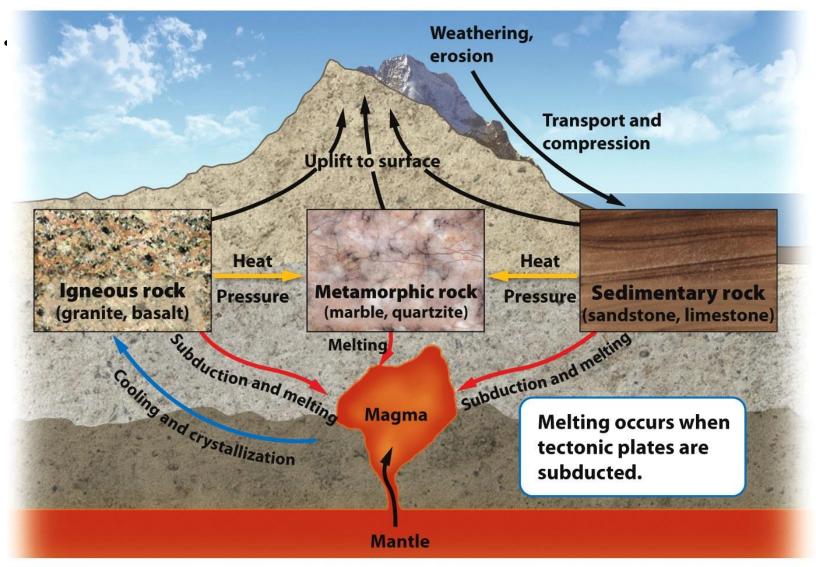


Figure 8.15 Environmental Science © 2012 W. H. Freeman and Company

- **Igneous rocks:** rocks that form directly from magma.
 - Intrusive igneous: form from within Earth as magma cools.
 - Extrusive igneous: form when magma cools above Earth (e.g., formed when volcano ejects magma).

- Sedimentary rocks: sediments such as mud, sands, or gravels are compressed by overlying sediments.
- Metamorphic rocks: sedimentary, igneous, or other metamorphic rocks are subjected to high temperatures and pressures.

- Weathering: rocks are exposed to air, water, certain chemicals, or biological agents that degrade the rock.
 - Physical weathering: mechanical breakdown of rocks and minerals.

Figure 8.16a Environmental Science © 2012 W. H. Freeman and Company

Figure 8.16b Environmental Science © 2012 W. H. Freeman and Company

• **Chemical weathering:** breakdown of rocks and minerals by chemical reactions.

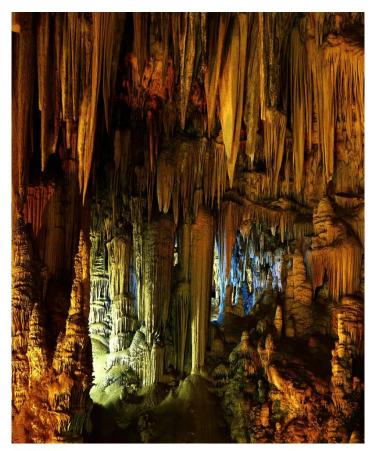
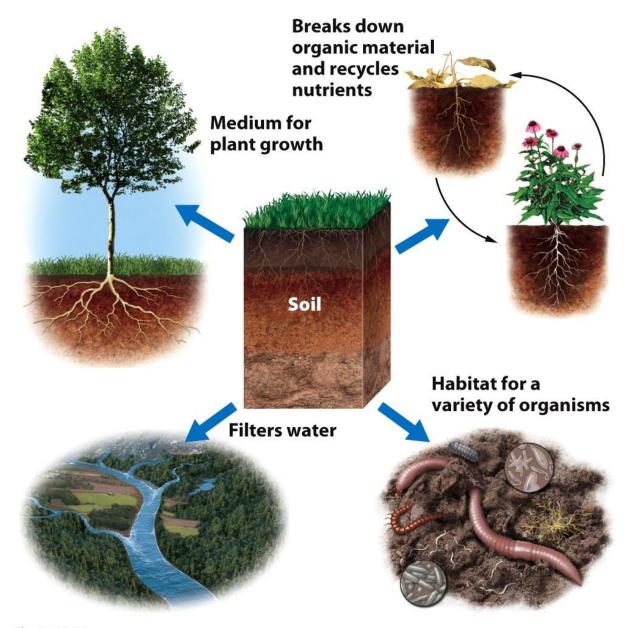



Figure 8.17 Environmental Science © 2012 W. H. Freeman and Company Erosion: physical removal of rock fragments from a landscape or ecosystem. Wind, water, ice transport, and living organisms can erode materials.

Figure 8.18 Environmental Science © 2012 W. H. Freeman and Company • **Deposition:** accumulation or depositing of eroded material such as sediment, rock fragments, or soil.

- Soil is important because it
 - Is a medium for plant growth
 - Serves as a primary filter for water
 - Is a habitat for living organisms
 - Serves as a filter for pollutants

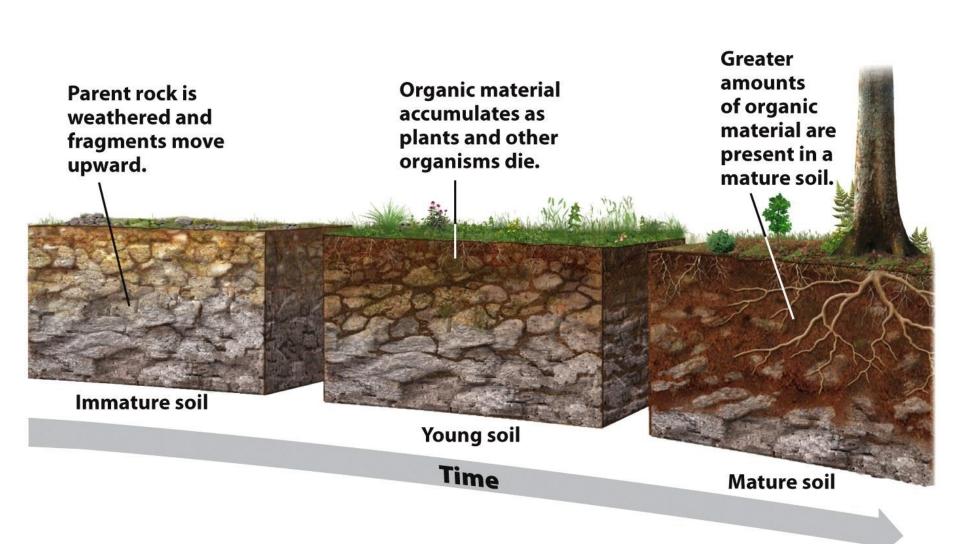


Figure 8.19 *Environmental Science* © 2012 W. H. Freeman and Company

- Five factors that determine the formation of soil:
 - **I.Parent material:** what the soil is made from influences soil formation.
 - **2. Climate:** type of climate influences soil formation.
 - **3. Topography:** surface and slope can influence soil formation.

I.Organisms: plants and animals can have an effect on soil formation.

2.Time: the amount of time a soil has spent developing can determine soil properties.

• Soils form and develop characteristic layers.

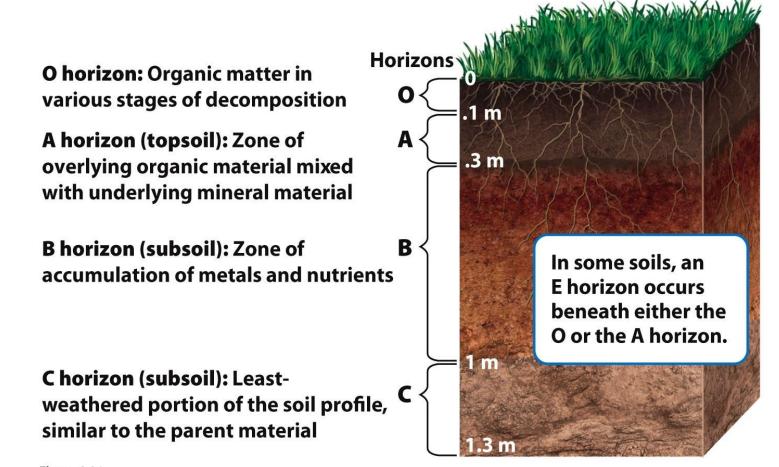


Figure 8.21 Environmental Science © 2012 W. H. Freeman and Company

- O horizon: (organic layer) composed of the leaves, needles, twigs, and animal bodies on the surface.
- A horizon: (topsoil) zone of organic material and minerals mixed together.

- **B horizon:** (subsoil) composed primarily of mineral material with very little organic matter.
- **C horizon:** (*parent material*) the least weathered horizon; similar to the parent material.

• **Texture:** the percentage of sand, silt, and clay the soil contains.

Clay (<0.002 mm)

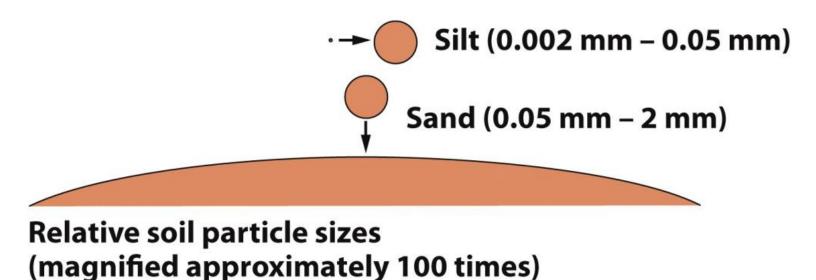
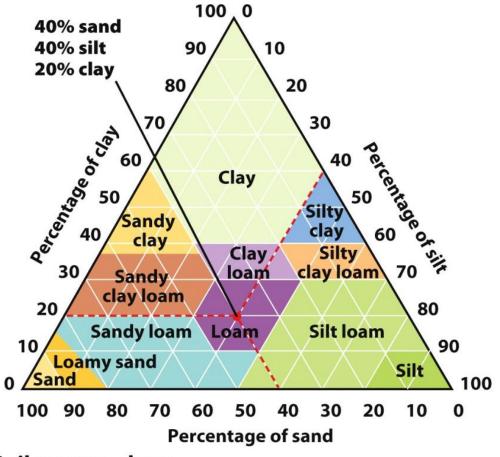
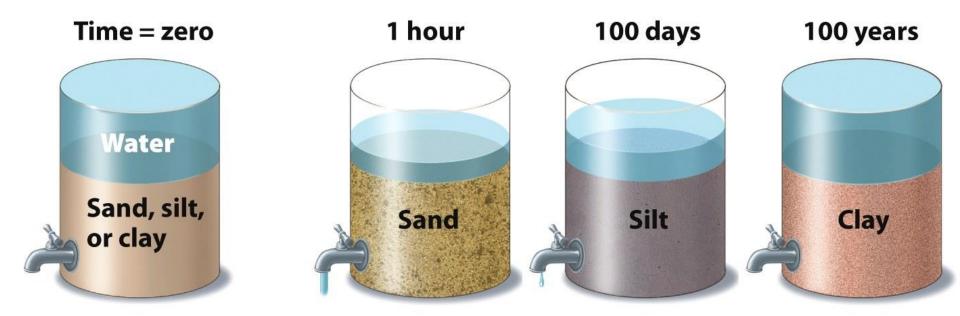
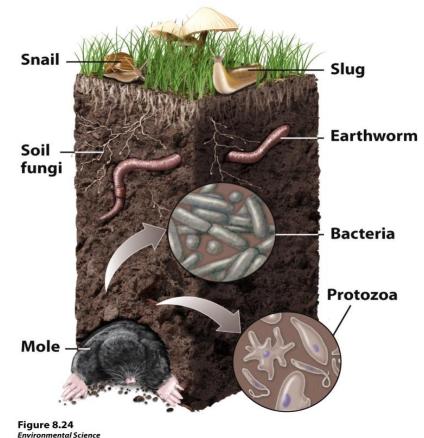



Figure 8.22b Environmental Science © 2012 W. H. Freeman and Company

Soil texture chart

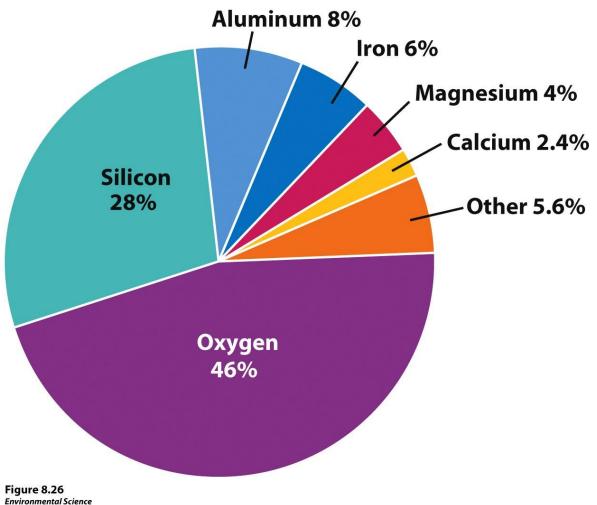
Figure 8.22a Environmental Science © 2012 W. H. Freeman and Company • **Porosity:** how quickly the soil *drains* (which depends on its texture).




Figure 8.23 Environmental Science © 2012 W. H. Freeman and Company

Chemical Properties of Soil

- **Cation exchange capacity:** ability of a soil to absorb and release cations (+ charged mineral ions), also called *nutrient holding capacity*.
- Soil bases: calcium, magnesium, potassium, and sodium.
- Soil acids: aluminum and hydrogen.
- **Base saturation:** the proportion of soil bases to soil acids.


Biological Properties of Soil

 Many organisms are found in the soil including fungi, bacteria, protozoans, rodents, and earthworms.

© 2012 W. H. Freeman and Company

Elemental Composition of the Earth's Crust

© 2012 W. H. Freeman and Company

Reserves

• Reserves: known quantity of a resource that can be economically recovered.

TABLE 8.1	Approximate supplies of metal reserves remaining				
Metal	Global reserves remaining (years)	U.S. reserves remaining (years)			
lron (Fe)	120	40			
Aluminum (Al)	330	2			
Copper (Cu)	65	40			
Lead (Pb)	20	40			
Zinc (Zn)	30	25			
Gold (Au)	30	20			
Nickel (Ni)	75	0			
Cobalt (Co)	50	0			
Manganese (Mr	n) 70	0			
Chromium (Cr)	75	0			

Sources: S. Marshak, *Earth: Portrait of a Planet,* 3rd ed. (W. W. Norton, 2007); U.S. Geological Survey Mineral Commodity Summaries, http://minerals.er.usgs.gov/minerals/pubs/mcs/.

The unequal distribution of mineral resources has social and environmental consequences.

Types of Mining—Surface

- **Surface mining:** removing minerals that are close to Earth's surface.
 - Strip mining: removes strips of soil and rock to expose ore. Produces waste tailings.
 - Open pit mining: creates large pit or hole in the ground that is visible from the surface. Copper is typically mined this way.

Types of Mining—Surface

- Mountain top removal: removes the entire top of a mountain with explosives.
- Placer mining: searching for metals and stones in river sediments; gold is often recovered in this manner.

Types of Mining—Subsurface

Subsurface mining: mining for resources that are 100 m or more below Earth's surface.

TABLE 8.2	Types of mining operations and their effects					
Type of mining operation	Effects on air	Effects on water	Effects on soil	Effects on biodiversity	Effects on humans	
Surface mining	Significant dust from earth-moving equipment	Contamination of water that percolates through tailings	Most soil removed from site; may be replaced if reclamation occurs	Habitat alteration and destruction over the surface areas that are mined	Minimal in the mining process, but air quality and water quality can be adversely affected near the mining operation	
Subsurface mining	Minimal dust at the site, but emissions from fossil fuels used to power mining equipment can be significant	Acid mine drainage as well as contamination of water that percolates through tailings		Road construction to mines fragments habitat	Occupational hazards in mine; possibility of death or chronic respiratory diseases such as black lung disease	

Types of Mining

- Surface mining is generally more damaging to the environment.
- Subsurface mining is more significantly dangerous to miners.
- In general, mining legislation does not address environmental issues, with the exception of coal mining.

- I. About how long ago did the Earth form?
- 2. What is the brittle, outermost portion of the Earth called?
- 3. About how thick is this layer?
- 4. What are hot spots?
- 5. Briefly define plate tectonics.

- I. How does a divergent plate boundary differ from a convergent one?
- 2. Define "fault."
- 3. Where do earthquakes occur?
- 4. What is an epicenter?

- I. In terms of intensity, how does an earthquake of magnitude 4 differ from one of magnitude 7?
- 2. What is a *mineral*? Give several examples.
- 3. Why do volcanoes occur?

- I. How is igneous rock formed?
- 2. How is metamorphic rock formed?
- 3. How is sedimentary rock formed?
- 4. In which type of rock are fossils found?
- 5. What are the two types of weathering?

- I. What is erosion?
- 2. Soil is composed of what three types of particles?
- 3. What is a soil horizon?
- 4. Explain the CEC of a soil.
- 5. Name three forms of surface mining.
- 6. What are some effects associated with mining?